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Largest Terrestrial Electromagnetic Pulsar
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The power spectrum formula of the synchrotron radiation generated by the electron
and positron moving at the opposite angular velocities in homogenous magnetic field
is derived in the Schwinger version of quantum field theory. It is surprising that the
spectrum depends periodically on radiation frequencyω which means that the system
composed from electron, positron, and magnetic field forms the pulsar.
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1. INTRODUCTION

We will show that the large hadron collider (LHC) which is at present time
under construction in CERN can be considered in near future also as the largest
electromagnetic terrestrial pulsar. We know it will operate with proton and antipro-
ton beams in such a way that the collision center of mass energy will be 14 TeV
and luminosity 1034 cm−1 s−2. To achieve such large luminosity it must operate
with more than 2800 bunches per beam and a very high density of particles in
bunches. The LHC will also operate for heavy Pb ion physics at a luminosity of
1027 cm−1 s−2 (Evans, 1999).

The collision of particles is caused by the opposite directional motion of
bunches. Or, if one bunch has the angular velocityω, then the bunch with an-
tiparticles has angular velocity−ω. Here we will determine the spectral density
of photons in the simplified case where one electron and one positron move in
the opposite direction on a circle. We will show that the synergic spectrum de-
pends periodically on time. This means that the behavior of the system is similar
to the behavior of electromagnetic pulsar. In case the situation is generalized to
bunches of LHC, then it is possible to call this accelerator a terrestrial electro-
magnetic pulsar. Now let us approach the theory and explicit calculation of the
spectrum.
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The production of photons by circular motion of charged particle in ac-
celerator is one of the most interesting problems in the classical and quantum
electrodynamics.

In this paper we are interested in the synergic photon production initiated by
the circular motion of electron and positron in the homogenous magnetic field. This
process is the generalization of the one-charge synergic synchrotronČerenkov ra-
diation which has been calculated in source theory two decades ago by Schwinger
et al.(1976). We will follow also the author’s article (Pardy, 1994a) as the starting
point. Although our final problem is the radiation of the two-charge system in
vacuum, we consider, first in general, the presence of dielectric medium, which is
represented by the phenomenological index of refractionn and it is well known
that this phenomenological constant depends on the external magnetic field. In-
troducing the phenomenological constant enables to consider also theČerenkov
processes.

We will investigate here how the original Schwingeret al.’s spectral formula
of the synergic synchrotroňCerenkov radiation of the charged particle is modified
if we consider the electron and positron moving at opposite angular velocities.
Later we putn = 1. This problem is an analogue of the linear and circular problem
solved recently by author (Pardy, 1997, 2000) also in source theory. We will show
that the original spectral formula of the synergic synchrotron-Čerenkov radiation is
modulated by function 4 sin2(ωt) whereω is the frequency of the synergic radiation
produced by the system and it does not depend on the orbital angular frequency of
electron or positron. We will use here the fundamental ingredients of Schwinger
source theory to determine the power spectral formula.

Source theory (Dittrich, 1978; Schwinger, 1970, 1973) was initially con-
structed for a description of the particle physics situations occurring in high-energy
physics experiments. It enables simplification of the calculations in the electrody-
namics and gravity where the interactions are mediated by the photon or graviton,
respectively. It simplifies particularly the calculations with radiative corrections
(Dittrich, 1978; Pardy, 1994b).

2. FORMULATION OF A PROBLEM

The basic formula of the Schwinger source theory is the so-called vacuum to
vacuum amplitude:

〈0+ | 0−〉 = e
i
h W, (1)

where in case of the electromagnetic field in the medium, the actionW is given by
the following formula:

W = 1

2c2

∫
(dx) (dx′)Jµ(x)D+µν(x − x′)Jν(x′), (2)
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where

Dµν
+ =

µ

c
[gµν + (1− n−2)βµβν ]D+(x − x′), (3)

whereβµ ≡ (1, 0), Jµ ≡ (c%, J) is the conserved current,µ is the magnetic per-
meability of the medium,ε is the dielectric constant of the medium, andn = √εµ
is the index of refraction of the medium. FunctionD+ is defined as follows
(Schwingeret al., 1976):

D+(x − x′) = i

4π2c

∫ ∞
0

dω
sin nω

c |x− x′|
|x− x′| e−iω|t−t ′|. (4)

The probability of the persistence of vacuum follows from the vacuum am-
plitude (1) in the following form:

|〈0+ | 0−〉|2 = e−
2
h ImW, (5)

where ImW is the basis for the following definition of the spectral functionP(ω, t):

−2

h
Im W

d= −
∫

dt dω
P(ω, t)

hω
. (6)

Now, if we insert Eq. (2) into Eq. (6), we get after extractingP(ω, t) the
following general expression for this spectral function:

P(ω, t) = − ω

4π2

µ

n2

∫
dx dx′ dt′

[
sin nω

c |x− x′|
|x− x′|

]
× cos[ω(t − t ′)]

[
%(x, t)%(x′, t ′)− n2

c2
J(x, t) · J(x′, t ′)

]
. (7)

Let us recall that the last formula can be derived also in the classical electro-
dynamical context as it is shown for instance in the Schwinger article (Schwinger,
1949). The derivation of the power spectral formula from the vacuum amplitude
is more simple.

3. THE POWER SPECTRUM OF OPPOSITELY MOVING CHARGES

Now, we will apply the formula (7) to the two-body system with the opposite
charges moving at the opposite angular velocities in order to get in general synergic
synchrotron-̌Cerenkov radiation of electron and positron moving in a uniform
magnetic field.

While the synchrotron radiation is generated in a vacuum, the synergic
synchrotron-̌Cerenkov radiation can produced only in a medium with dielectric
constantn. We suppose the circular motion with velocityv in the plane perpen-
dicular to the direction of the constant magnetic fieldH (chosen to be in the
+z direction).
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The condition for the existence of thěCerenkov electromagnetic radiation
is that the velocity of a charged particle in a medium is faster than the speed of
light in this medium. This radiation was first observed experimentally byČerenkov
(1937) and theoretically interpreted by Tamm and Frank (1937) in the framework of
classical electrodynamics. A source theoretical description of this effect was given
by Schwingeret al.(1976) at the zero-temperature regime and the classical spectral
formula was generalized to the finite temperature situation in electrodynamics and
gravity in the framework of the source theory by author (Pardy, 1989, 1995). We
derive the general formula for the synergic generation of radiation initiated by the
motion of two-body system in a uniform magnetic field.

We can write the following formulas for the charge density% and for the
current densityJ of the two-body system with opposite charges and opposite
angular velocities:

%(x, t) = eδ(x− x1(t))− eδ(x− x2(t)) (8)

and

J(x, t) = ev1(t)δ(x− x1(t))− ev2(t)δ(x− x2(t)) (9)

with

x1(t) = x(t) = R(i cos(ω0t)+ j sin(ω0t)), (10)

x2(t) = R(i cos(−ω0t)+ j sin(−ω0t)) = x(−ω0, t) = x(−t). (11)

The absolute values of velocities of both particles are the same, or|v1(t)| =
|v2(t)| = v, where (H = |H|, E = energy of a particle)

v(t) = dx
dt

, ω0 = v

R
, R= βE

eH
, β = v

c
, v = |v|. (12)

After insertion of Eqs. (8)–(9) into Eq. (7), and after some mathematical
operations we get

P(ω, t) = − ω

4π2

µ

n2
e2
∫ ∞
−∞

dt′ cos(t − t ′)
2∑

i , j=1

(−1)i+ j

×
[
1− vi (t) · v j (t ′)

c2
n2

]{
sin nω

c |xi (t)− x j (t ′)|
|xi (t)− x j (t ′)|

}
. (13)

Usingt ′ = t + τ , we get for

xi (t)− x j (t ′)
d= A i j , (14)

|A i j | = [R2+ R2− 2RR cos(ω0τ + αi j )]1/2 = 2R
∣∣ sin

(ω0τ+αi j

2

)∣∣, (15)
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whereαi j were evaluated as follows:

α11 = 0, α12 = 2ω0t, α21 = 2ω0t, α22 = 0. (16)

Using

vi (t) · v j (t + τ ) = ω2
0R2 cos(ω0τ + αi j ), (17)

and relation (15) we get withv = ω0R

P(ω, t) = − ω

4π2

µ

n2
e2
∫ ∞
−∞

dτ cosωτ
2∑

i , j=1

(−1)i+ j

×
[
1− n2

c2
v2 cos(ω0τ + αi j )

]sin
[

2Rnω
c sin

(
ω0τ+αi j

2

)]
2R sin

(
ω0τ+αi j

2

)
. (18)

Introducing new variableT by relation

ω0τ + αi j = ω0T (19)

for every integral in Eq. (18), we getP(ω, t) in the following form:

P(ω, t) = − ω

4π2

e2

2R

µ

n2

∫ ∞
−∞

dT
2∑

i , j=1

(−1)i+ j cos

(
ωT − ω

ω0
αi j

)

×
[
1− c2

n2
v2 cos(ω0T)

]{
sin
[

2Rnω
c sin

(
ω0T

2

)]
sin
(
ω0T

2

) }
. (20)

The last formula can be written in the more compact form,

P(ω, t) = − ω

4π2

µ

n2

e2

2R

2∑
i , j=1

(−1)i+ j

{
P(i j )

1 − n2

c2
v2P(i j )

2

}
, (21)

where

P(i j )
1 = J(i j )

1a cos
ω

ω0
αi j + J(i j )

1b sin
ω

ω0
αi j (22)

and

P(i j )
2 = J(i j )

2A cos
ω

ω0
αi j + J(i j )

2B sin
ω

ω0
αi j , (23)

where

J(i j )
1a =

∫ ∞
−∞

dT cosωT

{
sin
[

2Rnω
c sin

(
ω0T

2

)]
sin
(
ω0T

2

) }
, (24)
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J(i j )
1b =

∫ ∞
−∞

dT sinωT

{
sin
[

2Rnω
c sin

(
ω0T

2

)]
sin
(
ω0T

2

) }
, (25)

J(i j )
2A =

∫ ∞
−∞

dT cosω0T cosωT

{
sin
[

2Rnω
c sin

(
ω0T

2

)]
sin
(
ω0T

2

) }
, (26)

J(i j )
2B =

∫ ∞
−∞

dT cosω0T sinωT

{
sin
[

2Rnω
c sin

(
ω0T

2

)]
sin
(
ω0T

2

) }
. (27)

Using

ω0T = ϕ + 2π l , ϕ ∈ (−π, π ), l = 0,±1,±2, . . . , (28)

we can transform theT-integral into the sum of the telescopic integrals according
to the scheme: ∫ ∞

−∞
dT→ 1

ω0

l=∞∑
l=−∞

∫ π

−π
dϕ. (29)

Using the fact that for the odd functionsf (ϕ) andg(l ), the relations are valid∫ π

−π
f (ϕ) dϕ = 0;

l=∞∑
l=−∞

g(l ) = 0, (30)

we can write

J(i j )
1a =

1

ω0

∑
l

∫ π

−π
dϕ

{
cos

ω

ω0
ϕ cos 2π l

ω

ω0

}{
sin
[

2Rnω
c sin

(
ϕ

2

)]
sin
(
ϕ

2

) }
, (31)

J(i j )
1b = 0. (32)

For integrals with indicesA, B we get

J(i j )
2A =

1

ω0

∑
l

∫ π

−π
dϕ cosϕ

{
cos

ω

ω0
ϕ cos 2π l

ω

ω0

}{
sin
[

2Rnω
c sin

(
ϕ

2

)]
sin
(
ϕ

2

) }
,

(33)

J(i j )
2B = 0. (34)

So, the power spectral formula (21) is of the form

P(ω, t) = − ω

4π2

µ

n2

e2

2R

2∑
i , j=1

(−1)i+ j
{

P(i j )
1 − n2β2P(i j )

2

}
; β = v

c
, (35)
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where

P(i j )
1 = J(i j )

1a cos
ω

ω0
αi j , (36)

P(i j )
2 = J(i j )

2A cos
ω

ω0
αi j . (37)

Using the Poisson theorem
∞∑

l=−∞
cos 2π

ω

ω0
l =

∞∑
k=−∞

ω0δ(ω − ω0l ), (38)

the definition of the Bessel functionsJ2l and their corresponding derivations and
integrals

1

2π

∫ π

−π
dϕ cos

(
z sin

ϕ

2

)
coslϕ = J2l (z), (39)

1

2π

∫ π

−π
dϕ sin

(
z sin

ϕ

2

)
sin(ϕ/2) coslϕ = −J ′2l (z), (40)

1

2π

∫ π

−π
dϕ

sin
(
z sin ϕ

2

)
sin
(
ϕ

2

) coslϕ =
∫ z

0
J2l (x) dx, (41)

and using equations

2∑
i , j=1

(−1)i+ j cos
ω

ω0
αi j = 2(1− cos 2ωt) = 4 sin2ωt, (42)

we get with the definition of the partial power spectrumPl

P(ω) =
∞∑

l=1

δ(ω − lω0)Pl , (43)

the following final form of the partial power spectrum generated by motion of
two-charge system moving in the cyclotron:

Pl (ω, t) = [4(sinωt)2]
e2

πn2

ωµω0

v

×
(

2n2β2J ′2l (2lnβ)− (1− n2β2)
∫ 2lnβ

0
dx J2l (x)

)
. (44)

So we see that the spectrum generated by the system of electron and positron
is formed in such a way that the original synchrotron spectrum generated by
electron is modulated by function 4 sin2(ωt). The derived formula involves also
the synergic process composed from the synchrotron radiation and theČerenkov
radiation for electron velocityv > c/n in a medium.
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Our goal is to apply the last formula in situation where there is a vacuum. In
this case we can putµ = 1, n = 1 in the last formula and so we have

Pl (ω, t) = 4 sin2(ωt)
e2

π

ωω0

v

(
2β2J ′2l (2lβ)− (1− β2)

∫ 2lβ

0
dx J2l (x)

)
. (45)

So, we see, that final formula describing the opposite motion of electron and
positron in accelerator is of the form

Pl ,pair(ω, t) = 4 sin2(ωt)Pl (electron)(ω), (46)

wherePelectronis the spectrum of radiation only of electron. The result is surpris-
ing because we naively expected that the total radiation of the opposite charges
should be

Pl (ω, t) = Pl (electron)(ω, t)+ Pl (positron)(ω, t). (47)

So, we see that the resulting radiation can not be considered as generated
by the isolated particles but by a synergical production of a system of particles
and magnetic field. At the same time we cannot interprete the result as a result of
interference of two sources because the distance between sources radically changes
and so, the condition of an interference is not fulfilled.

The classical electrodynamics formula (46) changes our naive opinion on
the electrodynamical processes in the magnetic field. From the last formula also it
follows that at timet = πk/ω there is no radiation of the frequencyω. The spectrum
oscillates with frequencyω. If the radiation were generated not synergically, then
the spectral formula would be composed from two parts corresponding to two
isolated sources.

4. DISCUSSION

We have derived in this paper the power spectrum formula of the synchrotron
radiation generated by the electron and positron moving at the opposite angular
velocities in homogenous magnetic field. It forms an analogue of the author arti-
cle (Pardy, 2000) where only colinear motion of two electrons, or two positrons
was considered. We have used the Schwinger version of quantum field theory, for
its simplicity. It is surprising that the spectrum depends periodically on radiation
frequencyω which means that the system composed from electron, positron, and
magnetic field behaves as a pulsating system. While such pulsar can be represented
by a terrestrial experimental arrangement it is possible to consider also the cos-
mological existence in some modified conditions.

To our knowledge, our result is not involved in the classical monographies
on the electromagnetic theory and at the same time it was not still studied by
the accelerator experts investigating the synchrotron radiation of bunches. This
effect was not described in textbooks on classical electromagnetic field and on the
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synchrotron radiation. We hope that sooner or later this effect will be verified by
the accelerator physicists.

The radiative corrections obviously influence the synergic spectrum of pho-
tons (Pardy, 1994a,b). However, the goal of this paper is restricted only to the
simple processes.

The particle laboratory LEP in CERN used instead of single electron and
positron the bunches with 1010 electrons or positrons in one bunch of volume
300µm× 40µm× 0.01 m. So, in some approximation we can replace the charge
of electron and positron by the chargesQ and−Q of both bunches in order to
get the realistic intensity of photons. Nevertheless, the synergic character of the
radiation of two bunches moving at the opposite direction in a magnetic field is
conserved.
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